- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Shubhanshu (1)
-
Agrawal, Rakesh (1)
-
Turnley, Jonathan_W (1)
-
Vincent, Kiruba_Catherine (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Chalcogenide perovskites are promising semiconductor materials with attractive optoelectronic properties and appreciable stability, making them enticing candidates for photovoltaics and related electronic applications. Traditional synthesis methods for these materials have long suffered from high‐temperature requirements of 800–1000 °C. However, the recently developed solution processing route provides a way to circumvent this. By utilizing barium thiolate and ZrH2, this method is capable of synthesizing BaZrS3perovskite at modest temperatures (500–600 °C), generating crystalline domains on the order of hundreds of nanometers in size. Herein, a systematic study of this solution processing route is done to gain a mechanistic understanding of the process and to supplement the development of device quality fabrication methodologies. A barium polysulfide liquid flux is identified as playing a key role in the rapid synthesis of large‐grain BaZrS3perovskite at modest temperatures. Additionally, this mechanism is successfully extended to the related BaHfS3perovskite. The reported findings identify viable precursors, key temperature regimes, and reaction conditions that are likely to enable the large‐grain chalcogenide perovskite growth, essential toward the formation of device‐quality thin films.more » « less
An official website of the United States government
